Para los principales productores de caña de azúcar, los costos de cosecha, carga y transporte, representan una gran proporción de los costos totales de producción, con tasas que van desde el 25% hasta el 35% respecto al costo total (Weekes 2004). Mejorar la eficiencia de sus operaciones es un objetivo común que impacta la productividad de sus recursos, la calidad de la biomasa obtenida, el consumo energético y el rendimiento económico del sistema de producción.
Los ingenios azucareros, producto de los procesos que sustentan esta actividad, presentan altos costos de inversión en flota vehicular, altos gastos operacionales y subutilización de los equipos de cosecha, alce, y transporte. Se estima que alrededor del 60% de la media del tiempo que los equipos de transporte permanecen en la zona de descargue, es tiempo improductivo, mientras que en la zona de cargue este tiempo es del 50% (Amú 2010), tasas que se relacionan con la falta de sincronización de las operaciones de corte, alce, transporte y entrega de caña. Países como Cuba, Brasil y Australia, han logrado mejoras significativas en materia de sostenibilidad, inversión y eficiencia de sus operaciones de cosecha y transporte de caña de azúcar, mediante el desarrollo de modelos logísticos que evalúan la sincronización de sus equipos. Dichos modelos se han desarrollado a partir de las características propias de cada región, motivo por el cual se hace compleja la adopción íntegra de los mismos en ingenios específicos.
Con el objetivo de diseñar un modelo de análisis que integre los principales elementos operacionales, económicos y ambientales del sistema de cosecha, carga y transporte de caña de azúcar; se presenta una investigación de carácter preliminar, descriptiva, correlacional y analítica. Mediante la identificación de los elementos que controlan el sistema de cosecha, carga y transporte de caña; a partir de la recolección de información de forma directa en los procesos reales y en la literatura existente; con base en la comprensión de las características, propiedades y comportamientos de las variables del modelo conceptual; debido a que se estima la causalidad al intervenir en las variables del modelo que controlan el sistema objeto de estudio en la investigación; dado que se plantean estrategias de mejora mediante el análisis de los resultados obtenidos a través del modelo estructurado.
El producto final de este proyecto realizado mediante un enfoque cuantitativo, será un modelo desarrollado en una hoja de cálculo basada en un modelo matemático de análisis, que servirá para evaluar escenarios de los procesos logísticos de abastecimiento de caña de forma sencilla, contemplando indicadores económicos, operacionales y ambientales; constituyéndose en una herramienta de análisis cuantitativo multicriterio para la toma decisiones.
La metodología utilizada corresponde a la formulación de un modelo matemático haciendo uso de análisis computarizado de los ciclos del sistema de cosecha, carga y transporte de caña de azúcar (ciclos del tractor o cadeneo y ciclos de unidad de transporte principal. Figura 1) por medio de una hoja de cálculo, de tal forma que se puedan estudiar las interacciones de los elementos que conforman el sistema por medio de un análisis de sensibilidad a través de escenarios. Complementariamente, el modelo permite, mediante la anidación de variables, realizar un análisis económico y ambiental a partir del comportamiento de los indicadores operacionales.
Análisis operacional: El análisis operacional del modelo se basa en la determinación de la productividad y el rendimiento del sistema, por medio del estudio de sus ciclos de operación y la sincronización entre los equipos de cosecha, carga y transporte de caña de azúcar. Se establecen los ciclos del sistema a partir del tiempo que implique alcanzar la equivalencia entre la biomasa descargada en las unidades de transporte principal y la capacidad material de sus equipos de transporte (vagones de autovolteo para el ciclo del tractor); y la biomasa descargada en la fábrica y la capacidad material de sus equipos de transporte (vagones del camión para el ciclo del transporte principal). Los indicadores operacionales obtenidos se relacionan con las tasas de utilización de los equipos y la capacidad material del sistema.
Indicadores operacionales – Outputs | Unidades | |
Utilización de la cosechadora | UC | Horas de cosechadora / Hora |
Utilización de un tractor – Solo viaje | UTv | Horas de viaje / Horas disponibles |
Utilización de la flota de tractores – En general | UTg | Horas de inactividad / horas disponibles / flota de tractores |
Utilización del camión – Solo descargando | UCam D | Horas descargando / Horas |
Utilización del camión – En general | UCam G | Horas de inactividad / Hora |
Utilización de los operarios | UO | Horas trabajando / Hora |
Capacidad material del sistema | Csis a | Unidades de cosecha / Hora |
Eficiencia de campo actual de la cosechadora | EfC C | Porcentaje |
Tiempo total para hacer el trabajo | T | Horas |
Tiempo de operarios total para hacer el trabajo | TO | Horas |
Cantidad cosechada | QC | Unidades de cosecha / ciclo |
Cantidad descargada en el camión | QD | Unidades de cosecha / ciclo |
Capacidad material del sistema, verificación | Csis b | Unidades de cosecha / ciclo |
Cuadro 1. Indicadores del análisis operacional
Análisis económico: El análisis económico del modelo se basa en los costos de operación o costos de uso de maquinaría agrícola, estos dependen de varios factores, entre los que se destacan la inversión inicial, la intensidad de uso, el mantenimiento, el estado de conservación, y la antigüedad de los equipos. La estructura general del costo del modelo propuesto se define por la siguiente relación (Velasco 2010):
CT = CV + CF
Donde CT hace referencia a los costos totales de uso de maquinaría en un período dado, y que se determina por la sumatoria de dos grandes grupos de costos que son los costos variables (CV) y los costos fijos (CF).
Los costos variables son generados en la medida en que la maquinaría sea utilizada, en el caso del modelo de análisis propuesto se relacionará con la utilización definida para cada equipo y afectada por los insumos, imprevistos, combustibles asociados a la maquinaría.
Los costos fijos en cambio, no se relacionan con la utilización de los equipos, se encuentran relacionados o no, con gastos de dinero asociados a la maquinaría y afectados típicamente por la inversión inicial, la vida útil, los seguros, los impuestos y sus costos de operador.
Con el objetivo de proporcionar un análisis económico que complemente el análisis operacional del modelo, los costos totales de uso de la maquinaría son llevados a unidades monetarias por ciclo, de manera tal que pueda evidenciarse el comportamiento del gasto económico a medida que se modifican las variables operacionales del sistema.
Indicadores económicos – Outputs | Unidades | |
Costo fijo de la cosechadora por ciclo | H_CF_Cycle | Unidades monetarias / ciclo |
Costo fijo del tractor por ciclo | T_CF_Cycle | Unidades monetarias / ciclo |
Costo fijo del vagón de autovolteo por ciclo | SD_CF_Cycle | Unidades monetarias / ciclo |
Costo fijo del camión por ciclo | Tr_CF_Cycle | Unidades monetarias / ciclo |
Costo fijo del vagón del camión por ciclo | W_CF_Cycle | Unidades monetarias / ciclo |
Costo variable de la cosechadora por ciclo | H_CF_Cycle | Unidades monetarias / ciclo |
Costo variable del tractor por ciclo | T_CV_Cycle | Unidades monetarias / ciclo |
Costo variable del camión por ciclo | Tr_CV_Cycle | Unidades monetarias / ciclo |
Costo total por ciclo | CT_cycle | Unidades monetarias / ciclo |
Costo por unidad cosechada | CT_ton | Unidades monetarias / unidad de cosecha |
Cuadro 2. Indicadores del análisis económico
Análisis ambiental: El análisis ambiental del modelo se basa en la estimación de dos componentes de consumo energético: El primero de ellos es el gasto energético directo derivado de las actividades relacionadas con el transporte de biomasa, y de desplazamiento en la cosecha. Para ello se adapta el método utilizado por Lozano (Lozano 2015) en el cual se calcula la energía consumida para el transporte con base en el poder calorífico del diésel, el consumo de diésel de los equipos y el desplazamiento de los mismos. El segundo componente de consumo energético utilizado en el modelo hace referencia a la energía gris utilizada en la construcción y el mantenimiento de la maquinaria. Para ello se adapta el método utilizado por Lozano (Lozano 2015) y se calculan las unidades de energía por ciclo, de manera tal que pueda evidenciarse el comportamiento del consumo energético a medida que se modifican las variables operacionales del sistema.
Indicadores económicos – Outputs | Unidades |
Consumo energético directo de la cosechadora | MJ / Ciclo |
Consumo energético directo del tractor | MJ / Ciclo |
Consumo energético directo del camión | MJ / Ciclo |
Consumo energético gris de la cosechadora | MJ / Ciclo |
Consumo energético gris del tractor y sus vagones | MJ / Ciclo |
Consumo energético gris del camión y sus vagones | MJ / Ciclo |
Consumo energético por unidad de cosecha | MJ / Unidad de cosecha |
Cuadro 3. Indicadores del análisis ambiental
Los resultados del modelo pueden evaluarse por medio de un estudio de caso y a partir de un análisis de sensibilidad. El caso de estudio comprende un proceso común de cosecha, carga y transporte de caña de azúcar haciendo uso de vagones de autovolteo, en el cual se puede evidenciar el uso del análisis de ciclos en un formato de hoja de cálculo.
Análisis de sensibilidad de escenario 1:
En este escenario se modifica para un sistema común de cosecha, carga y transporte de caña de azúcar, el número de tractores que conforma la flota de cosecha. Se mantienen los valores de entrada respecto al número de camiones y la cantidad de vagones.
El análisis de este escenario permite identificar como el número de tractores influencia el desempeño del sistema, particularmente se puede observar que al incrementar la flota de tractores a 2 unidades, la capacidad material del sistema crece de forma considerable (figura 2), al igual que la utilización del equipo de mayor capital intensivo, como es el caso de la cosechadora; sin embargo puede observarse que una flota de tractores mayor a 2 unidades causa una disminución progresiva de la capacidad material del sistema. La utilización de la flota de tractores tiende a decrecer en una tendencia predecible a medida que la misma (flota) aumenta. Respecto al análisis ambiental de este escenario, se puede evidenciar de forma clara como un incremento de la flota de tractores genera un mayor consumo energético por unidad de cosecha (figura 3. A). Este incremento se hace aún más considerable en flotas mayores a 2 tractores, contextos en los cuales la capacidad material del sistema decrece, haciendo así que dichas alternativas se consideren una configuración inviable desde la perspectiva de impacto ambiental versus la productividad del proceso. La disminución de las tasas de utilización de los equipos del proceso, el decrecimiento de la capacidad material del sistema en flotas mayores a 2 tractores, y la inversión en maquinaria, hacen predecible la tendencia del costo total por unidad cosechada. Puede observarse una tendencia exponencial en el incremento los costos (figura 3. B).
Con base en el estudio de caso se proponen como trabajo futuro la vinculación de escenarios relacionados con la variación del número de vagones por camión y la variación simultánea de vagones y unidades de transporte principal.
El diseño de un modelo de análisis basado en ciclos permite una representación del sistema de cosecha, carga y transporte de caña de azúcar; de manera tal que es posible predecir diversos indicadores operacionales mediante la variación de los parámetros que controlan el sistema. Dichos parámetros agrupan variables tales como: Características del campo de cosecha, variedad del cultivo, especificaciones técnicas de los equipos y tiempos del proceso; lo cual permite que el modelo de análisis por medio de su estructura pueda adaptarse a condiciones específicas mediante sus datos de entrada, haciendo que este sea aplicable incluso a procesos de cosecha, carga y transporte de biomasa diferentes a la caña de azúcar.
La inclusión de indicadores económicos y de impacto ambiental complementa el modelo y sus indicadores operacionales, permitiendo un análisis integral del sistema, dotando al modelo de variables de decisión que permiten un estudio multipropósito y responden a los interrogantes referentes al impacto financiero y de consumo energético que tienen las propuestas operacionales en búsqueda de determinados niveles de productividad.
La implementación computarizada del modelo mediante una hoja de cálculo permite de una manera sencilla y rápida, un análisis de sensibilidad a partir de la evaluación de escenarios alternativos. De manera tal que el modelo contempla un análisis de rendimiento operacional, de costos marginales, y de consumo energético; mediante la evaluación de alternativas de capacidad variable. De acuerdo a lo anterior, el modelo permite evaluar la capacidad variable mediante diversas configuraciones de equipos de capital intensivo, sirviendo como herramienta para la toma de decisiones.
Con base en el estudio de caso se puede concluir que la determinación del número de tractores influye en la capacidad material del sistema, y en la utilización de los equipos; sin embargo, se puede afirmar que un incremento en la flota de tractores no impacta de forma directamente proporcional el rendimiento del sistema. Considerando la variación del tamaño de la flota de tractores, se puede observar como una configuración de 2 unidades presenta los mejores indicadores operacionales del caso, a partir de 2 unidades la capacidad material del sistema y la utilización de la cosechadora tienden a decrecer. Desde el punto de vista económico, los costos por unidad de cosecha aumentan al incrementar el tamaño de la flota, en una tendencia no lineal que se encuentra influenciada por la compra de tractores y vagones de autovolteo. Desde una perspectiva ambiental, el consumo energético total para flotas de tractores superiores a 2 unidades presenta un crecimiento considerable, de hasta el 50% de incremento en MJ/ton por cada tractor adicional. Dado lo anteriormente expuesto se concluye que, para el estudio de caso, que representa un sistema común de cosecha, carga y transporte en el Valle del Cauca, la configuración ideal de tractores es equivalente a 2 unidades por cada equipo de cosecha.
Recomendaciones: Como alternativa de proyección se propone la profundización del modelo a través del análisis estadístico de sus variables, ya que el sistema que representa corresponde a un proceso estocástico y sus parámetros en la realidad no son determinísticos, debido a que su comportamiento puede ser medido y aproximado por medio de distribuciones de probabilidad. Para dicho propósito se propone evaluar el comportamiento de los tiempos de los procesos tomados en campo.
En una pequeña comunidad agrícola en Michoacán, México, un niño llamado José Hernández soñaba con…
Sábado por la mañana, Robert acaba de acompañar a su mujer a su clase de…